ИНВУР - информационное агенство

Инновационный портал
Уральского Федерального округа

  
Расширенный поиск

подписка

Subscribe.Ru
Новости сайта инновационный портал УрФО
Рассылки@Mail.ru
Новости инноваций. Рассылка инновационного портала УрФО
 
важно!
 
полезно!
награды
 
 
 
 
 

партнеры
Официальный портал Уральского Федерального округа
Официальный портал
Уральского Федерального округа
Межрегиональный некоммерческий фонд наукоемких технологий и инвестиций
Межрегиональный некоммерческий фонд наукоемких технологий и инвестиций

Ежедневная газета ''Новости Сочи''.
Ежедневная газета
''Новости Сочи''
 
Институт Экономики УрО РАН
Инновации

» Наши партнеры »


Сейчас на сайте:
164 чел.

Новости



2015-09-08 ЗЕЛЕНОЕ ЗОЛОТО. НА ЧТО СПОСОБНЫ БЛАГОРОДНЫЕ МЕТАЛЛЫ?

Источник: Поиск, Беляева Светлана



Антимикробное и антибактериальное действие частиц серебра и иных металлов хорошо известно и давно используется в медицине. Однако ученые продолжают изучать это и другие свойства драгметаллов и приходят к неожиданным выводам.

В прошлом году проект коллектива исследователей лаборатории бионанофотоники Института проблем химической физики им. Н.Н.Семенова РАН под руководством Виктора Надточенко и лаборатории регуляции экспрессии генов микроорганизмов Института молекулярной генетики РАН под руководством Инессы Хмель получил поддержку Минобрнауки в рамках ФЦП “Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России на 2014-2020 годы”.

Цель работы - изучение научно-технических основ биосинтеза наночастиц серебра с помощью ароматических растений и бактерий Индии и России, а также перспектив их применения для борьбы с распространением социально значимых инфекционных заболеваний. О научной предыстории проекта и о текущих результатах работы рассказывает в беседе с корреспондентом “Поиска” его руководитель Виктор Надточенко:

- Изучением физико-химических свойств наночастиц мы занимаемся совместно с лабораторией Инессы Хмель около 10 лет. У нас есть общий научный интерес к проблеме их взаимодействия с живыми частицами (бактериями), в частности, к тому, как проявляют себя золотые и серебряные наночастицы в качестве антибактериальных систем. Исследовав антибактериальное действие, мы заинтересовались вопросом, связанным с биосинтезом наночастиц бактериями. Нас серьезно интересуют вопросы получения металлических наночастиц разной формы и размера биологическими, а не химическими методами.

Смысл в следующем: в процессе жизнедеятельности бактериальных систем возможно образование металлических частиц из растворенных ионов золота, серебра, других металлов. Это явление известно относительно давно. Существуют, к примеру, геологические отложения определенных металлов, которые формируются за счет жизнедеятельности бактерий. Нас эта тема заинтриговала с точки зрения получения серебряных и золотых частиц.

- Откуда такой интерес к благородным металлам?

- Здесь ситуация несколько парадоксальная. С одной стороны, серебро является мощным бактерицидом. С другой - существуют определенные штаммы бактерий, которые способны ионы серебра восстанавливать, превращать в наночастицы (то есть в металл). В Индии в последние 10 лет активизировались работы, в которых изучается образование наночастиц с использованием не бактерий, а растений. Наши коллеги из индийского Медицинского центра контроля заболеваний работают в этом направлении. Герань, алоэ - все это биологические системы, которые используются для получения металлических частиц. А в целом это научное направление называется Green Chemistry Nanoparticle Production. Главная идея заключается в том, чтобы не использовать химические соединения для получения наночастиц. И здесь мы сталкиваемся с интересными эффектами: частицы, которые образуются в биологических системах, как правило, приобретают довольно необычную форму.

- Почему это важно?

- Это связано с тем, что изменение формы наночастиц приводит к очень существенным сдвигам так называемого плазмонного резонанса, другими словами, к изменению спектра поглощения. А это, в свою очередь, интересно и важно с практической точки зрения. Такие частицы, которые создают эффект “игры” цвета, издавна используются в декоративном искусстве. Венецианское стекло или знаменитый древнеримский нефритовый кубок в Британском музее, который меняет цвет с зеленого на красный в зависимости от освещения, изготовлены с их участием.

- Но вы-то не музейными экспонатами заинтересовались?

- Верно. Ученым этот эффект интересен по другим причинам. Оказывается, можно получать наночастицы золота или серебра, которые поглощают свет в ближнем инфракрасном (ИК) диапазоне. Отсюда возникает целый ряд следствий. Например, такие наночастицы можно использовать для подавления активности раковых клеток. Это происходит так: при воздействии ИК-излучения введенные в опухоль наночастицы серебра и золота разогреваются, а возникшая тепловая энергия способна разрушать находящиеся поблизости раковые клетки и убивать микропаразитов. Правда, попутно возникает целая серия вопросов. Самый распространенный - не токсичны ли золотые наночастицы?

- У вас есть на него ответ?

- При получении золотых частиц необычной формы, которые должны поглощать в ближнем ИК-диапазоне, используются поверхностно-активные вещества вроде СТАВа (цетилтриметиламмоний бромид). А этот детергент является цитотоксичным, и “отмыться” от него очень сложно: он остается в виде примеси.

Но если получать наночастицы с помощью биологических методов, как предлагаем мы, эти проблемы исчезают и образовавшиеся частицы не содержат “злых” детергентов.

- Как идет взаимодействие с индийскими коллегами?

- Индия - тропическая страна, поэтому там ученые делают акцент на исследовании поведения золотых и серебряных наночастиц по отношению к микропаразитам. Наш интерес - бактериальные клетки. Но научные интересы и научные области часто пересекаются.

Например, фотосинтез могут проводить не только растения, но и бактерии. Есть тип бактерий - так называемые цианобактерии. Они могут проводить фотосинтез и фиксацию азота. Мы выяснили, что наночастицы из ионов металлов образуют, в основном, азотфиксирующие цианобактерии. Объяснение этому может быть следующее. В жизненных процессах участвуют так называемые электрон-транспортные цепи. Судя по всему, ионы металла способны “перехватывать” электрон в такой цепи и блокировать ее. Именно в азотфиксирующих бактериях потенциалы в электрон-транспортной цепи образуются более высокие, поэтому там лучше идет процесс восстановления.

- Чем должен завершиться проект?

- Мы должны предоставить новые знания о формировании частиц в результате биосинтеза и их физико-химических и бактерицидных свойствах, опубликовать результаты в серьезных изданиях. Этим сейчас и занимаемся.

- Участвуют ли в проекте молодые ученые?

- Конечно. Мы работаем со студентами и аспирантами кафедры химической физики (факультет молекулярной и химической физики) МФТИ, кафедры химической генетики химфака МГУ. Могу сказать, что проекты, финансируемые Минобрнауки, - это своего рода “отдушина”, которая позволяет нам проводить серьезные исследования и поддерживать талантливую молодежь.

декабрь 02-09 << пн / вт / ср / чт / пт / сб / вс / >>
 
Индекс Цитирования Яndex Rambler's Top100
дизайн, программирование: Присяжный А.В.