![]() |
![]() |
Инновационный портал
|
подписка важно!
полезно!
награды
партнеры
Сейчас на сайте: |
Новости![]() 2022-06-28 Нужны специалисты по Data Science
Пандемия данных. Почему в будущем медицина будет всё больше основываться на данных?Методы работы с большими данными всё активнее применяются в медицинской сфере: биоинженерии, биостатистике и биоинформатике, медицинской физике и аналитике. Вместе с экспертами онлайн-магистратуры МФТИ «Прикладной анализ данных в медицинской сфере» разбираемся, как Data Science интегрирует медицину будущего в практики настоящего.Почему данные становятся всё важнее для медицины? Пандемия коронавируса ускорила развитие биотехнологий и всей медицинской сферы. Специалисты в области Data Science помогают сделать исследования эффективнее, диагностику — быстрее, а методы лечения — действеннее. Машинное обучение и анализ данных в медицине позволяют создавать хранилища данных и сервисы, обновлять и оптимизировать инфраструктуру реестров, заниматься передовыми исследованиями в областях доказательной медицины, фармацевтики и фармакологии. Благодаря работе аналитиков данных разработка новых лекарств становится дешевле и быстрее, постановка диагноза — точнее, а рекомендации по лечению — более индивидуализированными, в соответствии с особенностями каждого пациента.
Помимо этого, по мнению эксперта, из-за того, что в теле человека существует множество механизмов, работу которых учёные и врачи пока не до конца понимают, клинические испытания лекарств и методик сперва проводятся на животных, а затем — на специальных фокус-группах. Чтобы двигаться в сторону более глубокого понимания внутренних механизмов работы тела человека, необходимо собирать больше данных. Чтобы эти данные анализировать, в биомедицинской сфере нужны специалисты по Data Science. Согласен с Эмилем и Станислав Отставнов, заведующий лабораторией анализа показателей здоровья населения и цифровизации здравоохранения Физтех-школы биологической и медицинской физики МФТИ и также академический руководитель онлайн-магистратуры «Прикладной анализ данных в медицинской сфере». Он подчёркивает, что главным мерилом внедрения любых изменений в здравоохранение является повышение продолжительности жизни человека. Он обращает внимание на то, как по мере развития человечества совершенствовались и способы борьбы за долголетие. Если в Средневековье для существенного прорыва было достаточно улучшить санитарно-эпидемиологическую обстановку и организовать водопровод, то дальше для серьёзных изменений требовались уже фундаментальные научные открытия: появление рентгена, изобретение антибиотиков, расшифровка генома.
Найти злокачественную опухоль на фото и применить ИИ в здравоохранении: как большие данные совершенствуют медицину Примеров успешного применения больших данных в медицине уже достаточно, чтобы сделать вывод об эффективности обращения к ним. По данным экспертов компании SAS, инструменты Data Science помогают бороться с «обезличенным здравоохранением», когда стандартизация методов лечения приводит к снижению их результативности. Например, самые популярные препараты, включённые в американскую медстраховку Medicare, помогают всего 21% пациентов. Анализ и обработка информации помогают нивелировать подобные ошибки медицины. Компания Express Scripts ежегодно анализирует миллионы выдаваемых в аптеках рецептов на препараты. В перспективе это приведёт к тому, что медперсонал будет знать о возможных побочных эффектах от лекарства ещё до того, как выписать его пациенту. Эмиль Магеррамов приводит ещё несколько примеров, когда данные в медицине, а точнее, применение Machine Learning в той или иной форме, помогали в разработках и исследованиях. В одном из таких проектов он лично принимал участие.
Кроме того, существуют стартапы, которые занимаются анализом крови и состава микробиоты человека. По результатам анализа подбирается персональная диета, учитывающая уникальные особенности каждого пользователя. Станислав Отставнов в качестве иллюстрации о важности использования данных в медицине вспоминает кейс талидомида, заложившего основы современных фармаконадзора и доказательной медицины. Талидомид — популярный в 1960-е годы препарат, который впоследствии становился причиной развития периферического неврита и инвалидности у младенцев. Одна из экспертов Управления по продуктам и лекарствам США обратила внимание, что данных о побочных эффектах препарата недостаточно. Это позволило не допустить регистрации талидомида в Америке и спасло жизни многих пациентов.
Ещё один релевантный пример, особенно близкий жителям Москвы, — эксперимент по внедрению технологий ИИ в сфере здравоохранения в столице. В систему ЕМИАС интегрируется алгоритм, который анализирует результаты КТ, маммографии, флюорографии и других лучевых исследований, ускоряя постановку предварительного диагноза.
Как в будущем работа с данными повлияет на медицину? Международная консалтинговая компания Deloitte в аналитическом исследовании выделяет несколько трендов, которые будут характерны для медицины будущего. Большую роль в большинстве из них играют данные. Медико-технологические компании станут лидерами всей биомединдустрии, а разработка софта, способного анализировать медицинские данные, станет приоритетной задачей. Big Data захватят R&D-департаменты, а достижения в сфере искусственного интеллекта, нм-технологий, биоинформатики помогут существенно улучшить клиническую диагностику многих заболеваний.
Станислав Отставнов предполагает, что в будущем медицину ждёт появление радиомики, транскриптомики и ассистентов с ИИ в клинической практике. Радиомика подразумевает повсеместное внедрение во врачебную практику анализа изображений результатов лучевых исследований. Транскриптомика поможет узнать больше про активность клеточных процессов.
Появление персонализированной медицины и индивидуального подхода к лечению пациентов произойдёт совсем скоро и позволит существенно повысить эффективность лечения и профилактики.
Чем специалист по Data Science в биомеде отличается от обычного дата-сайентиста? Эмиль Магеррамов считает, что базовые знания дата-сайентиста в медицинской сфере не отличаются от базовых знаний обычного дата-сайентиста, хотя на более углублённой стадии изучения специалисты в биомеде переходят к более специфическим вещам: молекулярной биологии, методам работы с особыми базами медицинских данных.
Эксперт подчёркивает, что IT-специалисты в биомеде тесно работают с анализом медицинских изображений, а в них присутствует своя специфика: сканы томографий трёхмерные и имеют определённый формат, не похожий на стандартный jpeg. Такой дата-сайентист должен быть знаком с особыми архитектурами нейросетей для работы с такими данными и особыми алгоритмами и программами. Во время обучения в онлайн-магистратуре SkillFactory и МФТИ «Прикладной анализ данных в медицинской сфере» студенты научатся работать с массивами данных и на их основе разрабатывать инновационные медицинские решения. Применение методов Data Science в персонализированной медицине, анализе изображений, биоинформатике и генетике улучшает диагностику заболеваний и делает лечение более эффективным. После окончания обучения студенты смогут работать в лабораториях биомедицинских исследований, R&D-отделах healthtech-компаний, сфере биомедицинского моделирования и вычислительной биомедицины.
Хабр |
|
дизайн, программирование: Присяжный А.В.
|