![]() |
![]() |
Инновационный портал
|
подписка важно!
полезно!
награды
партнеры
Сейчас на сайте: |
ПроектыГлавная / Проекты / Необычные проекты
/ (19.05.2009) Живая материя – самая жгучая тайна нашей Вселенной ![]()
>>к оглавлению
Живая материя – самая жгучая тайна нашей Вселенной»огл.Известно, что генетическая информация управляет сложными биохимическими процессами и функциями живых клеток (организмов), однако как это происходит, до сих пор остается мировой загадкой. Удивительным открытием для биологов явилось то, что живые системы для самоуправления и самоорганизации пользуются своими информационными молекулярно-биологическими технологиями. А генетическая информация, оказывается, правит миром живого уже более 3,5 миллиардов лет! К сожалению, этот необъятный мир неведомых нам информационных систем и технологий пока не поддается исследованию. Ясно, что приоритет освоения данного направления в биологии неоспорим, а сам предмет нуждается в тщательном изучении и исследовании. Статья посвящена новому, пока еще не существующему направлению в молекулярной биологии, – молекулярной информатике. Автор в своих статьях предлагает для ознакомления и обсуждения новые идеи и концепции информационной организации живого. 1. Информационный подход к молекулярным проблемам»огл.Во всей Вселенной, видимо, нет более таинственного и более загадочного явления, чем жизнь. Современное естествознание до сих пор не может объяснить многие причины и механизмы функционирования живых систем, которые обладают удивительными природными свойствами самоуправления, самообновления и самовоспроизведения. Причем, даже отдельная клетка является сложнейшей биокибернетической системой, выполненной в миниатюре, где все компоненты, структуры и биохимические процессы упорядочены на молекулярном уровне. Исследованием живой материи и биомолекул в основном занимается молекулярная биология и биохимия – химия наиболее организованной материи. Возможно, поэтому в изучении живой материи до настоящего времени доминирует исключительно физико-химическое направление. Но, чем глубже ученые внедряются в детализацию физико-химических процессов, тем больше у них возникает сомнений в познаваемости живого. Учитывая сложно-зависимые физические, химические и иные процессы, протекающие в живой системе, многие исследователи и сегодня пессимистически относятся к реальности познания феномена жизни. И всем становится ясно, что молекулярные биологические науки зашли в мировоззренческий тупик. Между тем, уже давно известно, что наряду с вещественной и энергетической составляющими живой материи имеется ещё одна, не менее важная составляющая, – информационная, и только она в молекулярно-биологических процессах играет ведущую и организующую роль. Наука показывает, что жизнь на нашей Земле существует, поддерживается и развивается благодаря наследственной информации. Поэтому живые организмы по своей сути не могут ни функционировать, ни существовать, ни развиваться только лишь на физико-химической основе. Причем, как нельзя объяснить работу компьютера с помощью законов электротехники, точно так же нельзя понять и причины функционирования живых систем с помощью одних физико-химических закономерностей. Здесь нужен другой подход, который бы учитывал и информационную составляющую живого. В силу этих обстоятельств, несмотря на усилия многих естественных наук, до сих пор существует полный пробел в знаниях о главном, – о взаимосвязи между информацией, структурой и функцией в различных биологических процессах. Загадочной остаётся и главная проблема, – что такое информация, и как она действует в молекулярно-биологической системе? Остаётся открытым вопрос, – как, и каким образом, генетическая информация участвует в управлении процессами обмена веществ или получения энергии? До настоящего времени в молекулярной биологии отсутствует концепция информационного управления живой клеткой. С большим трудом выявлены отдельные фрагменты, но пока не видна общая картина прохождения и реализации генетической информации. Молекулярная форма управления и передачи информации для нас привлекательна именно тем, что позволяет управлять биохимическими процессами живых клеток на недосягаемом для других технологий уровне, – на уровне малых молекул, их атомных групп и отдельных атомов! К своему удивлению мы только сейчас узнаем, что в основе жизни лежит необъятный и практически неисследованный мир молекулярно-биологической информатики. Здесь для записи информации применяются мономеры – химические буквы и символы (био-логические элементы), имеющие размер в диаметре всего от 0,5 до 0,7 нм, а для физико-химического воплощения молекулярной информации используются те же природные силы, связи и взаимодействия, которые произвольно существуют и в микроструктурах неорганических форм материи. 2. Кодированная информация как главный атрибут живой материи»огл.Известно, что живая материя не всегда существовала на нашей планете, она прошла чрезвычайно длительный путь своего зарождения и эволюционного развития. И вполне очевидно, что для того, чтобы «вдохнуть жизнь» в структуры материи должны были быть не только веские причины, но и необходимые природные условия и предпосылки. Сейчас уже не секрет, что первопричиной появления жизни на Земле является универсальная способность материи и энергии к различным типам взаимодействия, видам движения и формам развития. А необходимые природные условия и предпосылки появления жизни, к счастью, оказались именно на нашей планете. Важно, что в процессе эволюции постепенно развивались те микроскопические (физико-химические) силы, связи и взаимодействия, которые определяют характер структурной организации материи. Этот факт явился предпосылкой и функциональной основой возникновения более высоких форм организации материи и более лабильных видов взаимодействия. К примеру, физико-химическая эволюция привела не только к образованию различных химических элементов, но и к появлению простых органических соединений. Сейчас эти соединения играют роль строительных блоков (химических букв или символов) при построении биологических макромолекул. А химический способ представления информации, с применением таких био-логических элементов, стал именно тем гениальным изобретением природы, при помощи которого была подведена черта под химической эволюцией материи, и были открыты необъятные дали и непредсказуемые пути великой эволюции – информационной и биологической. Причем, находчивость живой природы изумляет, – для воплощения молекулярной информации стали использоваться такие же физико-химические силы, связи и взаимодействия, которые существуют и в микроструктуре неорганических форм материи: притяжение и отталкивание субмолекулярных частиц, ковалентные связи между атомами, нековалентные типы связывания, элементарные молекулярные силы и взаимодействия. Можно сказать, что молекулярные сигналы живой природы всегда существуют именно в таком физико-химическом воплощении. В живом веществе, как оказалось, заключены не только ковалентные и нековалентные силы и связи, определяющие характер биохимических и информационных взаимодействий, но также и те элементарные внутренние силы саморазвития, которые делают возможным возникновение большого числа различных вариантов и позволяют дать им оценку в окружающей среде, то есть позволяют осуществить процесс селекции. Важен тот факт, что в процессе эволюции живой материи, естественные субмолекулярные и молекулярные лабильные силы и связи постепенно превращались в сигнально-информационный фактор, который стал использоваться в процессах управления и сигнализации живых молекулярных систем [1]. Первоначально эти факторы явились физической предпосылкой к формированию кодовых сигналов, а затем, и информационной основой молекулярных форм самоорганизации и самоуправления. Поэтому основной функцией живой материи стала системная организация и интеграция в её структуре органического вещества, химической энергии и молекулярной биологической информации. Только эта триада составляющих, в виде их структурно-функционального единства («слияния»), оказалась приспособленной к обеспечению процессов движения и развития биологической формы материи. Многие исследователи уже давно полагают, что без информационной составляющей существование живого немыслимо. Поэтому сейчас в литературе и в Интернете можно найти различные теории и гипотезы существования информации живого: от синергетической – до голографической теории; от лазерной, квантовой, волновой концепций и до обычной двоичной, шифруемой единицами и нулями. И неудивительно, что самой актуальной задачей в молекулярной биологии становится не только поиск сигнального переносчика информации (в физико-химическом воплощении), но и определение средств её хранения, обработки, передачи и реализации. К примеру, если в информационных технических системах для представления информации наиболее широко используются электрические сигналы с переносчиком в виде синусоидального или импульсного тока и напряжения, то очевидно, что живая молекулярная система «способна выделять из суммарного эффекта микроскопических взаимодействий информационный аспект и активно его использовать» [1] в процессах управления и оповещения (сигнализации). Сейчас уже ясно, что в информационных процессах живых систем, при программировании биологических структур и их функций, наряду с использованием ковалентных химических связей (при кодировании линейных молекулярных цепей), широко применяются и нековалентные типы связывания: электростатические эффекты, ионные и водородные связи, Вандерваальсовы силы, гидрофобный эффект и т. д. (при организации трехмерных молекулярных структур, а так же при информационном взаимодействии биологических макромолекул друг с другом с помощью их кодовых стереохимических микроматриц). Любопытно, что возникновение кодирования молекулярной информации напрямую связано именно с этими лабильными микроскопическими физико-химическими силами, связями и эффектами. Сейчас в живых системах они повсеместно используются для воплощения молекулярной информации. Кодированная информация, как атрибут живой материи, сначала способствовала возникновению живого, являясь причиной самоорганизации, управления и регулирования её биохимических процессов. Первоначально развитие кодированной информации шло бок обок с эволюцией живой материи. Далее кодированная информация, как отдельно существующая субстанция, стала важнейшей сущностью биосферы нашей планеты, а впоследствии, и причиной возникновения сознания и разума (индивидуального, субъективного, общественного, абстрактного), а в дальнейшем, и основой развития техносферы, ноосферы, инфоноосферы. Ясно, что косная материя не обладает столь мощными факторами управления и развития, какими являются кодированная информация и химическая энергия. Следует отметить, что природная кодированная информация, как мера упорядоченности структур и функций, является естественной характеристикой не любой, а только живой материи! По представлениям сегодняшнего дня сам факт возникновения кодирования связан не только с информационными феноменами живой материи, но и с проблемами её эволюции и другими аспектами жизни. Чрезвычайно важная роль кодирования информации связана не только с зарождением жизни на Земле, но и с её эволюционным развитием, неуемной жаждой активности, размножения и распространения. При передаче информации сам код столь же важен, как и используемые в нем символы. Наличие кода в любой системе всегда свидетельствует об определенном смысловом значении сообщения (семантике). Очевидно, что первая закодированная информация появилась на Земле более 3,5 миллиардов лет тому назад! И это была «буквенно-символьная» информация биологических макромолекул. Причем, она обеспечила не только потенциальную вероятность зарождения живой материи, но и процессы информационного управления обменом энергии и веществ. Заложенная в генах информация является основным фактором, обуславливающим как функционирование, так и развитие любой живой системы. Поэтому в ходе реализации различных биохимических превращений и биологических функций должна идти речь, в первую очередь, об управляемых информацией процессах. К сожалению, изучение прохождения генетической информации в живых системах было приостановлено (во второй половине 20 века) на этапе синтеза белковых молекул. Поэтому наши знания о реализации наследственной молекулярной информации в живых системах до сих пор имеют фрагментарный характер. А основные потоки и сети информации, существующие в любых живых клетках и организмах, почему-то постоянно «ускальзывают» от внимания биохимиков и биологов. В естествознании они сейчас представляют существенный познавательный пробел, который давно следовало бы ликвидировать. Многочисленные исследования и публикации на эту тему показывают, что в живых системах имеются естественные природные механизмы и технологии передачи наследственной информации, которые обеспечивают в живых клетках не только прямую и обратную информационную связь, но и повышенную достоверность передачи сообщений, высокую помехоустойчивость молекулярных кодов и сообщений и т. д. Между тем, нематериальность (виртуальность) кодированной информации показывает, что нельзя в настоящее время трактовать жизнь, как чисто материальное явление. Объяснение жизни может базироваться только на общности материальных и информационных (нематериальных) процессов, которые присущи всем живым системам. Более того, при изучении явлений жизни должно превалировать не материальное, физико-химическое представление, которое традиционно доминирует в естествознании, а, прежде всего, нематериальное мировоззрение, основанное на информационном подходе к молекулярно-биологическим проблемам. Очевидно, что здесь к нематериальной части живого мы можем отнести не ту мифическую «животворящую силу творца», которая декларативно заявляется приверженцами религии, а ту реально существующую информационную часть живого, которая заключена в программном обеспечении генома, в генетических информационных сообщениях, во всевозможных командах, данных, молекулярных кодовых сигналах и инструкциях макромолекул различного назначения и т. д. Ясно, что в основе организации всех живых систем лежат не только материальные (вещественные), но и виртуальные – информационные отношения. Отсюда становится очевидным, что жизнь – это бесценный дар не только материального мира нашей Вселенной, но и виртуального – нематериального мира, а сами мы: люди, животные, растения и даже микробы, являемся детьми этих двух миров. Известно, что, точно так же, как наше тело состоит из отдельных типовых клеток, имеющих различную структурную организацию, так и все макромолекулы и клеточные структуры строятся на основе отдельных унифицированных био-логических элементов (нуклеотидов, аминокислот, простых сахаров, жирных кислот и других типовых мономеров). Этот универсальный набор представляет собой не что иное, как элементную базу живого, или общий молекулярный биологический алфавит, который служит не только для построения макромолекул и клеточных компонентов, но и для кодирования и программирования их молекулярных структур и биологических функций. Мириады природных биохимических элементов (химических букв и символов) не могли бы программно (целенаправленно) соединяться в отдельные макромолекулы и работать в системе как единое целое, если бы в живой клетке не существовал информационный механизм их управления. В сложных механизмах управления любого организма имеется несколько уровней, но первым и основным из них является молекулярный уровень, который является в живых системах ключевым и фундаментальным. Информатикой называют новую область научно-технической деятельности человека, которая занимается изучением методов автоматизированной переработки информации. К её сфере деятельности может относиться не только применение компьютеров, но так же и исследование информационных систем вне техники, например, живой клетки. В этом случае её более справедливо назвать молекулярной информатикой. 3. Информация входит в круг основных сущностей нашего мира»огл.Информация наряду с материей и энергией в нашем мире является третьей фундаментальной сущностью. С информацией человек встречается на каждом шагу: в информационных технологиях, системах связи, системах управления, в информационных системах живых клеток и т. д. В общем виде можно сказать, что «Информация – это закодированные данные или сведения о любом факте, явлении, объекте или процессе, которые вырабатываются, передаются, и воспринимаются той или иной системой». Здесь информация обозначена как содержательные данные и сведения, которые представлены только в закодированной форме. Как мы видим, любая информация всегда предполагает наличие своей системы, где она способна циркулировать – генерироваться, кодироваться, перерабатываться, передаваться и восприниматься. Причем, источник информации передает её, а приемник – принимает. Такая модель вполне справедлива и для молекулярной биологической информации. Все эти процессы являются фундаментальными для любой живой системы, поэтому информация здесь тоже имеет свой семантический смысл и становится эффективной управляющей силой. Чтобы разобраться с проблемами молекулярной информатики, необходимо вспомнить основные представления, связанные с общим понятием «информация». 1. «Информация» не является физической величиной, несмотря на то, что лежит в основе самой жизни и играет роль одной из ключевых субстанций нашего мира. Она, хотя и пользуется для своего воплощения различными материально-энергетическими средствами, тем не менее, всегда выступает в качестве отдельного спутника и независимого виртуального природного явления. Поэтому кодированная информация является нематериальной сущностью. 2. Несмотря на то, что информация является нематериальной категорией, однако существовать и воспроизводиться она может только на базе системной организации и на основе тех или иных материально-энергетических средств и носителей. Поэтому информация всегда передается по каналам связи в виде материальных или энергетических сигналов, имеющих определенное смысловое значение. 3. Информация всегда предполагает наличие той или иной системы, где она может кодироваться, генерироваться и передаваться. Поэтому информация в системе всегда выступает как отдельное и самостоятельное явление, имеющее виртуальный (умозрительный) характер. 4. Отсюда следует, что кодированная информация, по своей природе, сущность не материальная, а виртуальная. То есть она и не вещество, и не энергия, а что-то другое, данное живой (материи) природе и нам в представление. Причем, важно отметить, что она подчиняется не физическим законам, а только своим специфическим принципам и правилам (закономерностям информатики). Информация, как правило, всегда выступает главной доминантой во всех функциональных процессах той или иной системы. 5. Кроме того, информация – это «многоликий Янус»: она может кодироваться на разных языках; записываться различными буквами, цифрами, знаками или химическими био-логическими элементами. Информация способна иметь множество разнообразнейших форм, видов и категорий и передаваться различными способами. 6. Загадочной остаётся способность одной и той же информации находиться и существовать в различных её видах и формах, передаваться (кодироваться) при помощи различных языков и записываться с помощью разных алфавитов. То есть одна и та же информация может храниться на различных физических носителях и передаваться от источника к приемнику по каналам, разным по своей природе. Причем, это одно из ключевых и фундаментальных свойств информации. 7. Информация, сохраняемая в любой записи, может считываться и передаваться на расстояние, записываться и вновь воспроизводиться без потерь, то есть формы её существования могут переходить одна в другую многократно. Информация, записанная любым способом, с течением времени может разрушаться под действием коррозии и других физико-химических факторов. Потери информации также могут происходить при её передаче под действием помех и т. д. 8. Хотя понятие «информация» неоднозначно и, как правило, зависит от области её использования и применения, однако для любой живой системы главным фундаментальным свойством является её способность к управлению и оповещению (сигнализации). Способность к структурной упорядоченности и функциональной организации живой материи – один из главных аспектов молекулярной информации. 9. Очень важное свойство информации заключается также в том, что она способна быть управляющей силой только в той системе, которая воспринимает её как истинную смысловую реальность, то есть, где она становится реально значимой сущностью. Поэтому работа живых и сложных технических систем может быть обеспечена потоками и циркуляцией только той информации, которая реально значима и дееспособна в этих системах. Особо пристальное внимание информация заслуживает именно потому, что она определяет функциональное поведение системы – повышает её организацию и понижает энтропию (дезорганизацию). 10. Очевидно, что любая сложная система способна пользоваться лишь той информацией, которая свойственна и присуща её природе! Поэтому в каждой системе, например, в живом организме циркулирует только «своя информация». Поэтому информация биомолекул другого организма является чуждой для данного организма, в связи с чем, она всегда отторгается и отвергается. Вспомним защитную реакцию иммунной системы. Это, на мой взгляд, тоже очень важное качество, которое входит в круг основных свойств и принципов информации. 11. К важным свойствам информации можно отнести и тот факт, что для передачи информации и других информационных процессов требуется относительно небольшое количество энергии. Однако слабые информационные воздействия в системе способны управлять работой любых, даже самых сложных силовых механических или энергетических установок. 12. Здесь мы затронули, по всей вероятности, лишь некоторую часть удивительных свойств «Информации». Однако, пользуясь отмеченными фактами и представлениями, прежде всего, необходимо видеть огромнейшую понятийную разницу между самими материально-энергетические объектами и физическими процессами нашего мира, которые порой бывают чрезвычайно грандиозными по своим масштабам, и той информацией, которая о них передаётся. Любой процесс или объект косной природы обладает лишь своими физическими (или химическими) характеристиками, однако информация о них – это, увы, сущность совершенно другой природы! Одно дело наличие и реальность материального мира и совсем другое – получение о его характеристиках информации, весь процесс которого связан не только с отбором нужных сведений и данных, но и с их переработкой – с процессами кодирования, преобразования и передачей сообщений. Природные материальные и физические процессы подчиняются только своим фундаментальным законам, изучением которых занимаются соответствующие науки. Информация же, исходя из общего понятия, не зависит ни от физических, ни от энергетических свойств своего носителя, она подчиняется только своим принципам и правилам. 13. Поэтому одним из основных характерных свойств информации является функция замещения. То есть информация – это никогда не сами исследуемые объекты, явления или процессы, – они замещаются закодированными сообщениями, состоящими из последовательностей букв, символов или знаков. 14. «Классическая» теория (кодированной) информации позволяет измерять информацию текстов и сообщений, исследовать и разрабатывать приемы её кодирования в передатчике и декодирования в приемнике, измерять пропускную способность канала связи, исследовать уровень помех в канале связи и т. д. 4. Особенности молекулярной биологической информации»огл.Удивительный и таинственный микроскопический мир молекулярной информатики любой живой клетки далек от наших повседневных представлений. Этот феномен, несмотря на усилия многочисленной армии исследователей, до сих пор не поддается изучению и поэтому до настоящего времени относится к самым засекреченным и жгучим тайнам живой природы. Живые молекулярные системы обладают невероятной плотностью записи информации, так как её кодирование в структурах макромолекул осуществляется на субмолекулярном уровне, с помощью боковых атомных групп молекулярных био-логических элементов – нуклеотидов, аминокислот, простых сахаров, жирных кислот и других мономеров. Даже мысленно трудно себе представить, какое колоссальное количество информации хранится в генетической памяти и циркулирует в биологических макромолекулах и структурах одной клетки, размеры которой в длину подчас составляют сотые доли миллиметра! К сожалению, необъятный микрокосмос биологических молекул живой клетки для человека до сих пор так же недосягаем, как и космос нашей Вселенной. Понятно, что для представления молекулярной информации в живых системах не применяются функции алгебры логики и операции двоичной арифметики. Здесь действуют строго свои, специфические закономерности молекулярной биохимической логики и информатики. При этом живая природа оказалась настолько искусным шифровальщиком и применила на молекулярном уровне такие системы кодирования и программирования, которые гарантировали сохранность тайн живой материи буквально до наших дней! К сожалению, среди биологов не нашлось квалифицированных криптографов, которые могли бы расшифровать многочисленные молекулярные коды и различные линейные и пространственные кодовые комбинации молекулярных био-логических элементов (мономеров), представляющие собой программные модули, используемые в структурах биологических макромолекул. Между тем, молекулярная информатика лежит не только в основе жизни, но и является фундаментом того необъятного «айсберга» генетических и информационных молекулярно-биологических технологий, которые правят миром живого уже более 3,5 миллиардов лет. Ясно, что микромир молекулярной информации не только существует, но даже «живет» полнокровной жизнью, причем, в каждом из нас и в каждом живом организме, поскольку все мы её «и душа, и тело», и средство её материального воплощения, и орудие её взаимодействия с окружающим миром. Естественно, что молекулярная информация точно так же как и другие виды кодированной информации подчиняется общим принципам и правилам. Она образуется сочленением химических букв, символов или знаков молекулярного алфавита, которые формируют необходимые предпосылки для представления информации. Поэтому перед живой клеткой не возникает проблемы, как передать информацию и, главное, какие материальные средства использовать для этого. Информация в живых молекулярных системах записывается с помощью элементарной формы органического вещества – мономеров (химических букв или символов). Следовательно, переносчиком информационных сообщений являются различные макромолекулы, в структурах которых при помощи химических букв или символов записана нужная биологическая информация. Главным же аспектом молекулярной информации является даже не выбранный код, а его смысловое значение (семантика). К примеру, таблица генетического кода указывает, какая аминокислота кодируется тем или иным кодоном (триплетом) в структуре иРНК (а значит, и в ДНК). Именно смысловое значение (семантика) превращает кодовую последовательность химических букв или символов молекулярных цепей макромолекул в информационное сообщение. Важным в цепях макромолекул представляется и порядок кодовых слов и предложений (модулей), то есть грамматический аспект информации. Поэтому семантический и синтаксический уровни записи сообщений в живых системах представляет наиболее важный аспект молекулярной информации. Общие свойства информации не исключают того, чтобы молекулярная информация могла бы обладать своими специфическими особенностями и свойствами. Однако ясно, что зарождение на нашей планете кодированной информации не могло бы произойти без наличия её материально-энергетических носителей, а так же без соответствующей системы управления. Поэтому, очевидно, что развитие как информации, так и живой материи шло в совокупности этих двух феноменов и в прямой взаимозависимости их друг от друга. Ясно, что: 1. Историческим первоисточником кодированной информации, со всей очевидностью, следует считать «самые древние» живые молекулярные системы. Одна из главных заслуг живой материи, видимо, и кроется в том, что с её «лёгкой руки», информация, зародившаяся и воспроизводимая в её недрах, вырвалась как джин из сказочной бутылки и заполнила наш мир мощными потоками и всеобъемлющими сетями виртуальной (кодированной) информации! Этим самым для человека был открыт путь для исследования загадочных тайн виртуального, то есть нематериального мира нашей Вселенной. А общие законы и принципы кодирования информации стали не только фундаментальными основами Жизни, но и, впоследствии заново были «открыты» человеком и нашли самое широкое распространение во многих областях человеческой деятельности: в технике, в науке, в управлении, в связи, в экономике, в социальной и общественной сфере и т. д. Поэтому саму Жизнь можно представить не только как одну из форм существования материи, но и как одну из форм существования, циркуляции и воспроизведения кодированной (генетической) информации, на основе системной организации живой материи. Ведь недаром же моментом зарождения Жизни на Земле считается возникновение кодирования, связанное с появлением наследственной информации. 2. Отметим, что, несмотря на виртуальность молекулярной информации, она отличается не только повышенной природной помехоустойчивостью и достоверностью при передаче сообщений, но чрезвычайно высокой своей «засекреченностью». 3. Кодированием, как известно, называется процесс преобразования тех или иных сведений и данных в совокупность букв (символов или знаков), определяемую кодом. А любой код является ключом для перевода информации из одной её формы в другую. По этой причине кодированная информация, по всем своим показателям, стала одним из самых гениальных изобретений живой природы. Ведь недаром же информация, в результате длительной эволюции, постепенно стала, наряду с веществом и энергией, важнейшей сущностью нашего мира. 4. Информация всегда выступает главной доминантой при управлении различными молекулярными объектами или процессами. Можно без преувеличения сказать, что только совокупность всех универсальных свойств информации обеспечила возможность строительства (кодирования и программирования) на основе молекулярных мономеров неограниченного количества различных по своей конструкции, назначению и функциональным свойствам биологических макромолекул. 5. Следует также отметить, что любая макромолекула в клетке создается для выполнения тех или иных биологических функций, поэтому она всегда встраивается в общую систему управления. После выполнения своих функций любая биомолекула выпадает из общей системы управления и поэтому подлежит разрушению (расщеплению). Это факт содействует непрерывности циркуляции информации. В противном случае клетка могла бы погрузиться не только в информационный хаос, но и превратиться в материальный склад своих метаболических отходов. 6. К исключительным свойствам информации, к примеру, генетической относится её способность бесчисленное количество раз передаваться из поколения в поколение, путём простой смены своих материальных носителей! Поразительно, но информация действительно способна чрезвычайно долго существовать за счет бесконечной смены своих носителей. Мы живем, благодаря полученной наследственной информации от своих близких и далеких предков. В нашем организме нескончаемым потоком идут процессы обмена веществ и энергии, с возрастом мы постоянно меняемся, и у нас в теле не остается ни одной биомолекулы, с которыми мы появились на свет при рождении, – неизменным остаётся только наше «Я» и та генетическая информация, благодаря которой мы существуем и развиваемся! 7. В силу этих обстоятельств, на первый план в живой системе выступает уникальная способность генетической информации двигать потоками энергии и вещества, но при этом самой оставаться неизменной или почти неизменной. Наследственная информация является фундаментальной основой любой живой системы! Очевидно, что информация всегда существует в сцеплении только с теми материально-энергетическими средствами, при помощи которых осуществляется её запись, передача, хранение или преобразование. Поэтому при разрушении переносчика сообщений сразу же исчезает и та информация, которая была записана на этом носителе. 8. Важным обстоятельством является и то, что перед живой клеткой не возникает проблемы, как передать информацию от источника к приемнику и, главное, какие материальные средства использовать для строительства своих аппаратных средств. Информация в живых молекулярных системах записывается с помощью элементарной формы органического вещества – мономеров (химических букв и символов). Следовательно, переносчиком информационных сообщений являются биомолекулы, в структурах которых записывается нужная информация. При этом обратим внимание на удивительно важные свойства живой материи, которые проявляются повсеместно. А именно: при построении любых биологических молекул и структур используются те же материальные носители, которые применяются для передачи молекулярной информации. Этот факт говорит об универсальных свойствах молекулярного алфавита, и, пожалуй, может объяснить, почему биомолекулы одновременно подчиняются не только физико-химическим, но и информационным закономерностям. 9. Как мы видим, живая природа пошла по пути использования как самой информации, так и средств её молекулярных носителей. Посредством оперативной памяти иРНК, молекулярного алфавита и соответствующих аппаратно-программных средств (трансляции) информация загружается в структуру белковых молекул, где она диктует биомолекулам не только структурное содержание, но и правила их поведения. Таким образом, циркуляция информации в клетке определяет не только структурную, но и программную часть всех компонентов клетки. В связи с этим, все макромолекулы и клеточные компоненты являются программируемыми устройствами, несущими в своих структурах функциональную информацию. 10. Загруженная в макромолекулы структурная и программная информация является основой их информационного и функционального поведения в общей системе управления живой клетки. В связи с этим, все клеточные процессы управляются и взаимно координируются той программной информацией, которая в данное время была экспрессирована и загружена в молекулярную структуру функциональных биологических молекул и компонентов клетки. Без управляющей и сигнальной (осведомляющей) информации любая сложная система управления мертва. Уберите из компьютера программную информацию и получите груду "железа". Уберите ДНК из живой клетки, и через некоторое время она перестанет функционировать. Ясно, что биологические макромолекулы и клеточные компоненты функционируют только потому, что все они в совокупности представляют собой общую систему самоуправления, а в их цепях и трёхмерных конформациях загружена та структурная и программная информация, которая транслирована генами. 11. Несмотря на то, что материя и энергия неизбежно являются фундаментальными основами жизни, сами по себе они не определяют принципиальной разницы между живыми и неживыми системами. Одной из главных характеристик живых систем является циркуляция в них наследственной информации, которая обеспечивает их жизнедеятельность. Информационный уровень развития и функционирования живой материи это, несомненно, новый, более высокий уровень её движения и организации. Здесь информация и материя выступают в качестве равноправных партнеров: информация использует материю в качестве носителя, а материя использует информацию для более высокого уровня своей организации. 12. При этом заметим, что движение информационных сообщений в живой клетке никогда не может осуществляться без движения их молекулярных носителей. Этот факт, по-видимому, и является первопричиной, побуждающей клетку строить свои вещественные отношения таким образом, чтобы движения информации всегда были бы обеспечены вещественными носителями! Этим задачам, по всей вероятности, подчинены все управляемые обменные процессы живой клетки, то есть, таким образом, наследственная информация в живой системе занимается материальным и энергетическим самообеспечением. 13. Отсюда следует также закономерный вывод о том, что многие универсальные свойства, приписываемые сегодня биологической форме движения материи, на самом деле относятся к информации, заключенной в её структурах, – но никак не к физико-химическим свойствам её биоорганических носителей! К этим свойствам, в первую очередь, относится способность живой материи к самосборке, саморегуляции, самовоспроизведению, а так же к селективному отбору. Очевидно, что все эти универсальные способности живого обеспечиваются только системной организацией и информацией, существующей на основе биоорганического вещества, но никак не самим веществом, какими бы уникальными физическими или химическими свойствами оно не обладало. 14. В связи с этим, следует важный вывод о том, что фактором наследственности является не генетический материал, как считают некоторые биологи. Фактором наследственности является только информация, записанная генетическим кодом на этом носителе. Этот факт, хотя и является дискуссионным, однако он закономерно открывается при внимательном прочтении «формулировки» понятия информации. Он четко просматривается при рассмотрении и изучении свойств, как самой биологической информации, так и свойств её молекулярного носителя. Очевидно, что взаимоотношения этих двух составляющих следует рассматривать виртуально, то есть в таком их виде, который всегда существовал между информацией и её носителем. Ясно одно, что главнейшей функциональной доминантой в структуре живой материи является – информация! 15. Не секрет, что на основе клеточной организации и управленческой деятельности наследственная информация в процессе эволюции формирует и совершенствует все новые и новые биологические объекты, которые вызывают новые циклы захвата и ввода в этот информационный круговорот все новых и новых порций вещества, энергии и информации. Эти процессы являются первопричиной роста, совершенствования, воспроизводства и развития не только отдельных организмов, но и эволюции биосферы в целом. 16. Об источниках и причинах эволюции живой материи до сих пор продолжаются дискуссии. К примеру, доминирующая в науке теория эволюции Дарвина в своей основе предполагает отбраковку неудачно сконструированных образцов живых организмов, что, якобы, и является движущей силой развития. Однако отделы технологического контроля существуют не только в живой природе и, как мы знаем, не они являются разработчиками и конструкторами годных к применению изделий. Что же тогда является источником тех могучих движущих сил, которые порождают необузданную генерацию живой материи и ошеломляющее разнообразие жизни? 17. Ответ на этот вопрос должен быть однозначным, так как только наследственная информация в живых системах является той неуёмной и необузданной силой и субстанцией, которая обладает чрезвычайно высокой способностью (на основе вещества, энергии и системной организации) создавать копии самой себя (реплицироваться), развиваться, совершенствоваться, распространяться и поэтому «вечно» существовать во времени и в пространстве. По крайней мере, до тех пор, пока имеются источники энергии и вещества, подходящие условия для существования живых систем и позволяет их программа развития. 18. Как мы видим, эволюция – это закономерный переход одного уровня системной организации материи (вещества), энергии и информации на другой более высокий уровень. Причем, информация в этой триаде играет ключевую роль, так как только она способна обеспечить целенаправленность, закономерность и упорядоченность процессов. Так как вещество и энергия участвуют в круговороте и никуда не исчезают, то имеются веские основания полагать, что эволюция, по своей сути, является процессом возрастающего воспроизводства и генерации новых видов и форм информации. Как мы видим, этот процесс осуществляется за счет использования и круговорота потоков энергии, информации и вещества. Особенно заметно это проявляется в живой природе и в сфере технических информационных технологий. Таким образом, наш мир закономерно становится всё более и более информационным и это трудно не заметить. 19. А сама Жизнь, благодаря внедрению и использованию наследственной информации, оказалась явлением эволюционного и функционального перехода вещества и энергии на качественно новый – информационный уровень их системной организации. Диктат информационной субстанции подчинил движение потоков вещества и энергии своей воле, а направленность эволюционных процессов оказалась изначально подчинена информации. 20. Заканчивая рассматривать особенности молекулярной информации необходимо подчеркнуть, что естественный ход развития и эволюции жизни на Земле, по всей вероятности, носит характер планетарного информационного явления. Между тем, одна из формулировок философии, определяющая сущность жизни, гласит: «Жизнь есть особая форма движения материи». Однако уже достаточно давно известно, что без информации и без энергии движение биологической формы материи немыслимо. Похоже, философы немного поспешили, когда приписали эти фундаментальные свойства – материи. Очевидно, что основную формулировку необходимо приводить в соответствие с новыми воззрениями. Так как становится фактом, что Жизнь, – это особая системная форма движения, воспроизводства и генерации информации, которая осуществляется на базе использования энергии и вещества. 21. Можно сказать, что Жизнь – это такая материальная форма движения, циркуляции и генерации информации, которая целенаправленно связана с преобразованием и обменом энергии и вещества с целью их функционального и эволюционного перехода в новые виды и формы молекулярной и функционально-биологической информации. Поэтому первый, фундаментальный уровень развития информационных субстанций и их технологий на нашей планете был реализован на молекулярно-биологической основе. С тех пор важнейшей сущностью на Земле стала информационная субстанция, а информация как одна из главных составляющих нашего мира действительно стала основой нашего мироздания. 22. Самоуправление и информационный обмен являются самыми существенными характеристиками функционирования живых систем. Поэтому в любых живых клетках феномены кодирования, хранения, перекодирования, передачи, обработки и использования генетической информации являются ключевыми для всех биологических процессов. Именно с кодированием информации связаны многие замечательные свойства живой материи. С кодированием, перекодированием и декодированием информации связаны не только организация живых систем, но и практически любые области человеческой деятельности. 23. Можно убедиться в том, что в живых организмах, для представления молекулярной информации в различных её видах и формах, существуют свои молекулярные биологические алфавиты, представляющие собой разные системы био-логических элементов (химических букв и символов). 24. Информационный подход к молекулярным биологическим системам может учитывать статистический, синтаксический и семантический уровни молекулярной информации. Молекулярная «информация как некая виртуальная сущность всегда передается с помощью набора химических букв или символов (статистический уровень), упорядоченных использованием кода (синтаксический уровень), для передачи значащего сообщения (семантический уровень), которое вызывает ответную реакцию (цель). Самое главное требование для того, чтобы некая информация могла быть передана от передатчика к приемнику – набор букв или символов. Последовательность букв или символов и синтаксические правила формируют лишь необходимые предпосылки для представления информации. Но основной аспект сообщения, однако же, состоит не в выбранном коде, форме символов или методе передачи (письменных, акустических, электрических, тактильных или обонятельных сигналах), но в его значении (семантике). Именно значение превращает кодовую последовательность букв или символов в информационное сообщение» [2]. 25. Очевидно, что молекулярная информация для разных уровней организации живых систем является «ведущей», а все другие информационные уровни организации биосистем являются «ведомыми» (т. е. подчиненными). 5. Молекулярный алфавит живой природы»огл.Известно, что всё живое на Земле, от ничтожной бактерии до человека, состоит из одинаковых «строительных блоков» – стандартного набора более чем трёх десятков типовых функциональных био-логических (биохимических) элементов. Этот типовой набор представляет собой не что иное, как элементную базу, или общий молекулярный биологический алфавит, который, по мнению автора статьи, служит не только для построения биомолекул, но и для кодирования и программирования молекулярных структур и функций живой материи. В состав этого уникального комплекса элементов входят различные системы био-логических элементов (отдельные молекулярные алфавиты): 1) восемь нуклеотидов, – «четыре из них играют роль кодирующих единиц ДНК, а другие четыре используются для записи информации в структуре РНК» [3]; 2) двадцать различных стандартных аминокислот, которые кодируются в ДНК и служат для матричного построения белковых молекул; 3) несколько жирных кислот, – сравнительно небольшое число стандартных органических молекул, служащих для построения липидов; 4) родоначальниками большинства полисахаридов является несколько простых сахаров (моносахаридов) и т. д. Все эти химические буквы и символы живой природы являются натуральными дискретными единицами молекулярной информации. Важно также отметить, что весь этот комплекс элементов обладает функциональной полнотой, так как содержит функционально полный набор био-логических элементов. Именно поэтому живая природа, пользуясь био-логическими элементами, способна к построению и реализации любых биологических структур и функций. Интересно, что кроме семантики сообщений все био-логические элементы обладают еще и универсальной природной способностью к выполнению различных – химических, энергетических, программных и других биологических функций. Информационные сообщения не могут перемещаться во времени и в пространстве нематериальным способом. Поэтому информация в живой системе, – это содержательные сведения, заключенные в том или ином послании или сообщении генома, которые хранятся, передаются и используются только в закодированной молекулярной форме в виде биологических молекул! Любой информационный код (и не только генетический) в живой клетке записывается химическим способом с помощью элементарной формы органического вещества, поэтому различные посылки и сообщения переносятся в структурах разных макромолекул. Очевидно, что элементная база представляет собой те системы биохимических элементов, используя которые живая клетка способна информационным путём строить различные биологические молекулы и структуры (определяя их морфологическую организацию), записывать в них информацию, а затем, с помощью этих средств осуществлять любые биологические функции и химические превращения (метаболические реакции). И ведь, действительно, – все биохимические элементы (химические буквы и символы), входящие в состав макромолекул, представляют собой ту элементарную форму органического вещества, с помощью которой формируются и передаются биологические коды молекулярной информации. Автор статьи считает, что информация в живой молекулярной системе передаётся с помощью различных дискретных кодовых сигналов, которые сначала формируются в «линейных» молекулярных цепях, а затем, и в трёхмерных структурах различных макромолекул. Следовательно, информация в живых клетках имеет молекулярный базис представления [4]! Невероятно, но все биохимические буквы и символы элементной базы (мономеры) живой материи оказалась наделёнными такими химическими и физическими природными качествами и свойствами, сочетание которых позволяет им в составе биологических макромолекул одновременно выполнять буквально различные по своей биологической роли элементарные функции и операции. 1. Служить в качестве строительных блоков, с помощью которых осуществляется физическое построение различных макромолекул. 2. Исполнять роль натуральных информационных дискретных единиц – химических букв или символов, с помощью которых в биомолекулы записывается молекулярная информация. 3. Служить в качестве элементарных дискретных единиц молекулярного кода, с помощью которых идёт кодирование, преобразование, передача, а впоследствии, – воплощение и реализация генетической информации. 4. Быть структурными элементами программных модулей, с помощью которых строятся алгоритмы структурного преобразования, а затем и программа функционального поведения различных биологических макромолекул. 5. Обуславливать потенциальную и свободную химическую энергию биологических макромолекул и т. д. Следовательно, все функции и операции молекулярной биохимической логики и информатики в живой системе выполняются и реализуются типовыми мономерами, которые несут элементарные химические сигналы и имеют простую «структурную схему»! Поэтому их вполне заслуженно можно назвать молекулярными био-логическими элементами. Вследствие этого, любая макромолекула клетки, состоящая из конечного множества таких элементов, является реализатором тех биологических функций и операций, которые информационным путём интегрированы и загружены в её трёхмерную структуру. Всё это указывает на то, что генетическая информация, загруженная в макромолекулы (с помощью аппаратных средств и молекулярного алфавита), определяет не только их молекулярное содержание, но и их структуру, форму, класс биоорганического соединения, потенциальную и свободную энергию химических связей. Вследствие этого, та программная информация, которая загружена в молекулярные структуры, всегда определяет биохимическую логику поведения любой макромолекулы в клеточной системе. Все типовые мономеры были отобраны в процессе эволюции, поэтому, входя в состав биологических молекул и клеточных компонентов, они определяет не только структуру живого вещества. Элементарный состав биомолекул всегда тождественно является и эквивалентом информационного генетического сообщения, и средством программного и энергетического обеспечения. Это замечательное свойство живой материи можно назвать тождественностью органического вещества, химической энергии и молекулярной информации! Поэтому, зная основы биохимии и молекулярной биологии, можно констатировать, что принцип единства вещества, энергии и информации – это и есть тот главный и основной принцип, который определяет и обуславливает само существование биологической формы материи. А универсальные свойства элементной базы живой материи лишь удостоверяют и подтверждают данную гипотезу [5]. Как уже отмечалось ранее, информация в молекулярной системе управления представляется элементарными физико-химическими сигналами биохимических элементов в виде различных их боковых атомных групп и атомов. Вспомним: сообщение в цепи ДНК или РНК кодируется в виде последовательности нуклеотидов, а носителями генетической информации являются азотистые основания – «боковые» атомные группы нуклеотидов. В полипептидной цепи белка это сообщение записывается в виде последовательности аминокислот, где носителями информации являются их боковые R-группы. В связи с этим, макромолекулы и структуры живой системы, состоящие из цепей био-логических элементов (цепей химических букв и символов в виде различных кодов или кодовых последовательностей), являются естественными носителями информации и программных средств, поэтому всё время находятся во взаимодействии друг с другом и с системой управления. Все информационные управляющие процессы в живой клетке, как правило, базируются на применении целостных биохимических элементов. В силу этих обстоятельств, молекулярной информацией можно назвать совокупность закодированных в той или иной макромолекуле генетических данных или сведений, определяющих все её структурные, функциональные и информационные характеристики, которые позволяют ей программно функционировать и определяют её роль, назначение и биологическую судьбу в данной системе. Поэтому бытующая в биологии концепция о том, что как происхождение, так и функциональное поведение живой материи можно описать как исключительно физико-химическое явление на молекулярном уровне, не соответствует действительности. Нельзя не учитывать информационную (нематериальную) составляющую живого и трактовать жизнь как чисто материальное явление [6]. Информация в живой системе, в зависимости от её вещественного носителя, может записываться различными буквами и символами (мономерами), и поэтому информационные сообщения могут существовать в различных вещественных воплощениях. А информация, находящаяся в структурах биологических молекул стала не только направляющей и организующей силой всех биохимических процессов, именно от её содержания зависят все показатели живой материи: её химический и структурный состав, все её качественные и количественные показатели. Очевидно, что только от информации зависит и содержание, то есть состав самого вещества. Следовательно, вещество в любой живой системе занимает, увы, не главную, как декларирует биологическая наука, а подчинённую роль! Это звучит неожиданно, однако вспомним, что информация, заключенная в генах, до мельчайших подробностей определяет аминокислотный состав и, соответственно, функциональное поведение белковых молекул. Структурный состав веществ целостного организма также всецело зависит от наследственной информации. Удивительно, но получается, что все мы живём под диктатом информации, которая не только окружает нас, но и внедрена и сосредоточена в каждом из нас на генетическом и молекулярно-биологическом уровне! А все мы – люди, по своей сути, и представляем собой высшую форму информационной субстанции, потому что в буквальном смысле состоим из одной информации и подчинены ей на всех уровнях своей сущности: на уровне генов, биологических молекул, на уровне каждой клетки. И ничего тут не поделаешь, – просто на Земле живые информационные субстанции существуют в таких видах и формах, которую они формируют на базе своей первичной (генетической и клеточной) информации и имеющейся на Земле материи. Чрезвычайная информационная насыщенность живого, к сожалению, биологами до сих пор еще не замечена, не осмыслена и не исследована. Однако если информация в живой системе не зависит от физических свойств своего носителя, то состав и свойства самого биоорганического вещества полностью зависят от информации. Поэтому можно сказать, что каждое информационное сообщение через элементарный состав и энергию передает своему носителю (биомолекуле) все те биологические качества и свойства, которые определяются генами. К примеру, таким путем происходит трансформация информации и её носителя в определённую структуру белковой макромолекулы со всеми её коммуникативными микроматрицами, исполнительными органами, механизмами, а так же программным и энергетическим обеспечением. Это позволяет каждой белковой молекуле функционировать в клетке в качестве молекулярного биологического автомата с программным управлением. Диаметр молекулы типичного глобулярного белка составляет всего 4-6 нм. Таким образом, очевидно, что живая клетка для реализации процессов управления своими биологическими структурами и функциями, создаёт свой многочисленный парк молекулярной «наноробототехники» с программной биохимической логикой управления, который работает на недосягаемом субмолекулярном уровне. В этом, очевидно, и заключается один из секретов молекулярных информационных биотехнологий. Только эти технологии позволяют работать ферментам и белкам (представляющим собой молекулярные автоматы или манипуляторы с программной биохимической логикой управления), с необыкновенно «высокой производительностью труда» и на недосягаемом субмолекулярном уровне. К примеру, одна молекула фермента уреазы способна расщепить за одну секунду при комнатной температуре до 30 000 молекул мочевины! Не будь «катализатора», на это потребовалось бы около 3 000 000 лет!» [7]. Следовательно, только при управлении этой реакцией с помощью молекулярного автомата (уреазой) её скорость может превосходить «естественную» её скорость расщепления во много триллионов раз. Есть ферменты, работающие быстрее, чем уреаза, и есть такие, которые работают медленнее. Очевидно, что только информационные молекулярные биологические автоматы (но не химические катализаторы) способны на такую сверхвысокую избирательность и производительность в работе. 6.Структурное кодирование и программирование биологических макромолекул»огл.Каждая макромолекула живой клетки функционирует в общей системе управления в соответствии с той программой, которая была загружена в ее микроструктуры при «изготовлении». Сама же программа макромолекулы – это представление алгоритма её функционирования с помощью позиционной последовательности составляющих её химических букв или символов (био-логических элементов), многочисленные единичные сигналы которых действуют как внутри макромолекулы, так и воспринимаются управляющей системой живой клетки. Поэтому программы макромолекул обеспечивают возможность физической реализации их биологических функций в клеточной среде. Очевидно, что в живой клетке повсеместно применяется принцип структурного кодирования и модульного программирования биологических макромолекул. Он представляет собой процесс программирования на алгоритмическом языке с использованием определенных конструкций. Структурное кодирование применяется для программирования отдельных модулей. Поэтому средства программного обеспечения состоят из функционально независимых модулей, что дает возможность производить их генерацию, приспосабливая к решению тех или иных биологических задач. Модульная структура позволяет относительно просто использовать и развивать программное обеспечение путем замены модулей, их перестановкой или введением новых компонентов [8]. Этот механизм по всей вероятности широко используется во время процессинга и «созревания» иРНК в клеточном ядре. Все загадки наследственности, изменчивости и функциональной организации живых систем кроются в молекулярных кодах живого, а точнее, в их смысловом содержании. Очевидно, что генетическая информация соответствует общему учению об информации. Однако при рассмотрении свойств наследственной информации на первый план выступает её специфика. Важнейшая особенность наследственной информации заключается в том, что вся молекулярная информация в живых системах (данные, команды, сообщения, алфавитные записи) представляется в виде линейных химических или пространственных (стереохимических) кодовых сигналов. То есть вся информация от передатчика к приемнику передается определенным линейным или пространственным комбинационным набором химических букв, символов или знаков. Под кодом понимается система условных предписаний при модульном программировании структур и клеточных компонентов. «Структурное кодирование (или перекодирование) в живой системе – это метод позволяющий создание программных (кодовых) молекулярных модулей на требуемых языках программирования» [8]. Причем, для кодирования и программирования молекулярных модулей используется элементная база живой материи, состоящая из унифицированных био-логических элементов (мономеров). Модульное программирование – это организация программы как совокупности небольших молекулярных модулей, структура и поведение которых подчиняется определенным закономерностям молекулярной биохимической логики и главное, определяется физико-химическими свойствами составляющих их элементов. «Модуль в данном случае рассматривается как простая независимая программная единица (код, процедура или команда), реализующая только одну функцию» [8]. К примеру, каждая полипептидная цепь в клетке состоит из отдельных программных модулей, указывающей ей (в клеточной среде) пути, порядок и последовательность информационной сборки трехмерной конформации белковой молекулы. А в основе генетического кода лежат триплетные модули нуклеотидов, которые определяют состав и чередование аминокислот в полипептидных цепях белковых молекул. Подобным образом кодируются и программируются все биоструктуры и функции клеточных компонентов. Генетическая информация через применение элементной базы (химических букв или символов) определяет структуру биологических макромолекул, а структура всегда является носителем и реализатором их функций, так как функциональные свойства каждой макромолекулы определяются взаимодействием и особенностями составляющих её кодовых модулей. «Системы структурного (модульного) программирования – это системы прямого программирования. То есть это системы, где их функции задаются их структурой. Системы структурного программирования – это такие системы, в которых воспринятый сигнал непосредственно переводится в действие (без всякой промежуточной «оцифровки»). По законам структурного программирования работает вообще любой биологический объект, а также любая часть этого объекта» [8]. Очевидно, что любая макромолекула является системой, функция которой обусловлена взаимодействием и интегративными свойствами образующих её кодовых модулей. Вследствие этого, любая макромолекула клетки, состоящая из конечного множества таких модулей, является реализатором тех биологических функций и операций, которые информационным путём интегрированы и загружены в её трёхмерную структуру. Сейчас в биологической литературе появляются работы, в которых авторы утверждают, что генетический текст и генетический код не способны хранить, обрабатывать и передавать огромные массивы информации. В силу этих обстоятельств, якобы, должны существовать иные пути и способы передачи наследственной информации, вплоть до передачи её «высшими сферами». Однако у официальной науке нет данных, которые бы подтверждали, что гены могут напрямую управлять живым веществом волновым или лазерным, полевым или стереогенетическим, цифровым, или каким-либо другим способом. Структурное кодирование (или перекодирование), применяемое в живой системе – это метод позволяющий создание программных (кодовых) молекулярных модулей на требуемых языках программирования. Причем, для кодирования и программирования молекулярных модулей используется элементная база живой материи, состоящая из унифицированных био-логических элементов (мономеров). «Поэтому, в частности, нельзя рассматривать генетические тексты как непосредственное зашифрованное описание порождаемых ими структур. Скорее, это – описание алгоритмов их пространственно-временной реализации, или даже алгоритмы построения автоматов, реализующих эти алгоритмы. По-видимому, именно поэтому сравнительно небольшой длине генетического кода организма соответствует огромный массив информации, необходимый как для непосредственного описания морфологических структур, так и их развития» [8]. По мнению автора данной статьи, гены управляют живой материей только путем её структурного кодирования и модульного функционального программирования, а все другие сопутствующие – волновые, полевые и другие проявления – вторичны, так как они обусловлены структурно-функциональным и информационным поведением огромного числа биомолекул и клеточных компонентов. Безусловно, некоторые из этих проявлений могут играть дополнительную, вспомогательную роль в управлении живой материей, однако первую скрипку в общем ансамбле процессов, всё-таки, играет программная информация генов, транслированная и загруженная в биологические молекулы и структуры живой системы. Очевидно, что все информационные массивы, загруженные в макромолекулы и другие клеточные компоненты, могут быть переданы только структурными генами, поэтому нет причин сомневаться в информационных возможностях генома. Здесь важно понять не только биохимическую логику живого состояния, но и найти те слова, которые могли бы дать объяснение логической цепи информационных событий, что порой представляет особую трудность. Не только теория информатики, но и законы биохимии могли бы дать многое для исследования закономерностей молекулярной информатики при перекодировании генетических текстов в морфологическую структуру белков и ферментов, при исследовании информационной и функциональной деятельности ферментов и белков и участия их в управлении метаболическими реакциями и морфогенетическими процессами. 7. Химический и стереохимический способы разделения сигналов»огл.Информационным сигналом обычно называют средство передачи – переносчик сообщения. Сигнал – это однозначное отображение сообщения, всегда существующее в некотором физическом воплощении. В живой молекулярной системе каждый типовой био-логический элемент (химическая буква или символ алфавита) характеризуется наличием своих функциональных атомных групп, которые определяют его химические свойства и служат входными и выходными цепями, с помощью которых элементы могут ковалентно соединяться друг с другом в длинные молекулярные цепи. И главное, – важно отметить, что каждый элемент (мономер) имеет еще и свою индивидуальную боковую атомную группу (или группы), которая в живой системе используется в качестве элементарного информационного химического сигнала! Вспомним: сообщение в цепи ДНК или РНК кодируется в виде последовательности нуклеотидов, а носителями генетической информации являются азотистые основания – «боковые» атомные группы нуклеотидов. Соответственно, и в полипептидной цепи белка это сообщение записывается в виде последовательности аминокислот, где носителями информации являются их боковые R-группы. Поэтому информация в живой системе кодируется на субмолекулярном уровне организации с помощью боковых атомных групп различных молекулярных мономеров. Однако известно, что основной смысл информационных сообщений состоит «не в выбранном коде, форме символов или методах передачи, а в его значении (семантике). Заметим, что этот центральный аспект информации не играет никакой роли в её хранении или передаче. Именно значение превращает определенный код или кодовую последовательность букв или символов в информационное сообщение. Эти значения не связаны ни с материей, ни с энергией, они связаны с определенным смысловым содержанием» [2]. Примером смыслового значения является генетический код, когда отдельные модули – кодовые группы из трех нуклеотидов иРНК (а, значит, и ДНК) определяет правильное расположение аминокислот в полипептидной цепи белка. Значит, проблема действия генов всегда сводится к расшифровке закодированных в них сообщений. Поэтому основной характеристикой живых систем является содержащаяся в них генетическая информация, которая путем перекодирования на другой код и другой носитель (при использовании молекулярного алфавита) обеспечивает все их физико-химические и биологические процессы. Нескончаемая череда длинных дискретных кодовых сообщений, характерных как для клеточного ядра, так и для цитоплазмы, при весьма широком параллелизме этих передач, является главной отличительной чертой живых информационных систем. Ясно, что в основе механизмов передачи генетической информации лежат циклические кодовые посылки различных информационных массивов. Например, различные аминокислоты полипептидной цепи, со всей очевидностью, организованы в виде отдельных структурных (модульных) кодовых сигналов, определяющих (в клеточной среде) различные по своей биохимической характеристике зоны, участки и фрагменты цепи, которые обуславливают соответствующие пути, порядок и последовательность информационной сборки белка. Заметим, что без соответствующей линейной информации свертывание полипептидной цепи было бы практически невозможным. «Расчеты показывают, что если полипептидная цепь из 100 аминокислотных остатков будет беспорядочно «перебирать» все возможные углы вращения вокруг каждой одинарной связи остова, пока не «найдет» свойственную ей биологически активную конформацию, то на это потребуется по меньшей мере 10 в 50 степени лет! В клеточных условиях, благодаря молекулярной информации в полипептидных цепях эта белковая макромолекула может быть построена всего за 5 с при 37* С» [3]. В полипептидных цепях белковых молекул кодируется разнообразнейшая информация. Поэтому важно знать, что любая полипептидная цепь всегда является тождественным эквивалентом соответствующего кодового послания генома, указывающего будущие характеристики белковой молекулы. Очевидно, что каждое сообщение, при передаче информации в полипептидной цепи белка, передаётся своими кодовыми модулями (кодовыми комбинациями аминокислот). Поэтому информация в цепи может содержать свою адресную, «операционную», структурную и текстовую (информационную) части. Значит, различные информационные сообщения в полипептидных цепях могут быть представлены различными молекулярными кодами и кодовыми комбинациями (модулями) аминокислотных остатков. Следовательно, в кодовых посылках структуры полипептидной цепи могут быть заключены: 1) адресные кодовые комбинации аминокислотных остатков, которые являются основой формирования адресных стереохимических кодов активного центра фермента (для коммуникативного взаимодействия с молекулами субстрата); 2) «операционная» кодовая комбинация аминокислот – служит основой формирования кода операции активного центра, указывающего характер химической реакции; 3) структурная часть кодовой комбинации аминокислотных остатков, которая кодирует построение и осуществляет программное обеспечение исполнительных органов и механизмов белковых молекул; 4) текстовая часть – кодирует и программирует средства информационной коммуникации белка с другими биомолекулами клетки (локальные или поверхностные рельефные микроматрицы). Эффективность применения в живых системах молекулярных кодов обеспечивается многократным циклическим их повторением в структурах типовых макромолекул. Разные молекулярные цепи, с информационной точки зрения, эквивалентны различным дискретным сообщениям. Можно сказать, что линейный принцип кодирования применяется живой природой не только для передачи сообщений, но и для компактной упаковки молекулярных цепей, а значит, и информации. Именно этот принцип широко применяется клеткой для структурной организации различных биомолекул, как универсальный способ преобразования «линейных» цепей в трёхмерную структуру биологических молекул. Заметим, что в результате конформационных преобразований в структуре белковой молекулы формируются соответствующие молекулярные органы и исполнительные механизмы, а на локальных и поверхностных участках возникает такая пространственно-упорядоченная организация боковых атомных R-групп элементов, которая в живой системе играет роль стереохимических кодовых информационных сигналов! К таким сигналам могут относиться: стереохимические команды управления активного центра фермента (адресный код и код химической операции); различные сигнальные и регуляторные кодовые компоненты; коммуникативные локальные и поверхностные кодовые биохимические матрицы (микроматрицы), служащие для информационного взаимодействия биомолекул с их молекулярными партнёрами и т. д. Очень важно, что в результате стереохимических преобразований, внутри макромолекулы (в её пространственной решетке) формируется специфическая пространственная координатная организация аминокислотных остатков, которая является основой построения исполнительных органов и механизмов белковой молекулы. А на поверхностных участках и в углублениях макромолекулы, при этом, формируются отдельные локальные и поверхностные кодовые стереохимические микроматрицы (образованные пространственной координатной организацией боковых R-групп элементов), которые служат для информационных взаимодействий и коммуникативного общения белка с другими молекулами клетки. В результате этих преобразований каждый белок клетки получает своё индивидуальное структурное, информационное, энергетическое и программное обеспечение. Поэтому, стереохимический принцип кодирования молекулярной биологической информации применяется живой природой для размещения в одной макромолекуле различных по своему назначению сигналов, сообщений, инструкций, команд управления, а также органов и механизмов их реализации [9]. Такая организация белковых молекул не обладает сильной структурной жесткостью, она всегда достаточно лабильна в тех пределах, которые необходимы для выполнения ими биологических функций. А функциональное поведение макромолекулы, при взаимодействии её с молекулярными партнёрами, определяется свободной энергией и результатом информационного взаимодействия как внутренних, так и внешних составляющих её элементов. Поэтому этот информационный уровень характеризуется уже взаимодействием биологических молекул друг с другом с помощью их локальных, рельефных или поверхностных микроматриц, в результате которых и возбуждаются их биологические функции. Стереохимический код – это пространственная кодовая организация элементов (букв или символов) и их боковых атомных групп в виде локальных или поверхностных биохимических микроматриц в углублениях или на поверхностных участках биологических молекул. Матричный принцип взаимосоответствия является основой информационного взаимодействия биологических молекул друг с другом. Такое соответствие в молекулярной биологии можно назвать информационной функцией. Только в случае комплементарных взаимодействий биомолекул друг с другом с помощью биохимических матриц, когда обнаруживается их химическая и стерическая взаимодополняемость, эти коды (субмолекулярные матрицы) активируются и ведут к возбуждению биологических молекул и их функций. Именно переключение состояний био-логических элементов в трехмерных конформациях, при информационных взаимодействиях биомолекул друг с другом, обеспечивают те функциональные процессы, которые происходят в структурах самих биологических молекул. То есть по совпадению кодов осуществляется контроль передачи и приёма молекулярной биологической информации. Здесь речь идёт о характеристиках процессов рецепции информации и способности рецепторной системы влиять на исполнительные органы биомолекул. Следовательно, можно констатировать, что стереохимические коды – это те молекулярные коды, которые непосредственно участвуют в формировании биологических функций и реализации химических превращений. Собственно, – это и есть те разыскиваемые коды соответствий биологических молекул, которые являются основой их информационного взаимодействия, а затем и функционального поведения. Стереохимическими кодами – пространственной организацией элементов в трёхмерной структуре, программируются функции, поведение и биологическая судьба не только белковой, но и любой другой биологической молекулы клетки. Таким путём кодируются и программируются все их биологические механизмы и функции. Так как все функции в молекулярной биологии возникают и формируются информационным путём, то это может означать лишь одно, – вся технология биологических процессов основана на генетической информации и применении различных молекулярных алфавитов живой формы материи. А само информационное сообщение в молекулярной биологии приобретает смысл через функцию, которую оно кодирует. Поэтому в живой молекулярной системе, под выполнением функций, с кибернетической точки зрения, должно пониматься исполнение белковыми молекулами (или другими функциональными молекулами клетки) различных информационных команд, директив, инструкций и сообщений, записанных в их молекулярной пространственной структуре. Все эти сообщения имеют дискретный характер и записываются стереохимическими кодами. Исследованием характеристик стереохимических кодов и микроматриц, в каждом конкретном случае, должна, по-видимому, заниматься специализированная дисциплина, такая как молекулярная биологическая информатика. Стереохимические коды и микроматрицы, представляющие собой управляющие или коммуникативные сигналы белковых (как, впрочем, и других) макромолекул, возникли в процессе эволюции живой материи и в настоящее время являются основой молекулярных информационных процессов в каждой живой клетке (организме). Все они образованы соответствующей пространственной организацией боковых атомных группировок био-логических элементов (химических букв или символов), входящих в состав кодовых сигналов. Такое динамическое информационное взаимодействие элементов в составе биологических молекул, которое особенно характерно для белковых молекул, является основой динамического механизма их биологических функций. Основной целью стереохимического кодирования и программирования биологических молекул является: 1. Передача в трёхмерных структурах биологических молекул различных сообщений со стереохимическим кодовым разделением сигналов. 2. Передача адресных сигналов стереохимическими кодами, которые удовлетворяют требованиям самых разнообразных сообщений. 3. Программирование работы молекулярных органов и исполнительных механизмов, определяющих функции биологических молекул. 4. Повышение помехоустойчивости информационных сообщений путём применения комплементарных обратных связей, при взаимодействии биологических молекул друг с другом с помощью их биохимических матриц. Следовательно живые клетки являются системами с информационной обратной связью, так как управляющий код, к примеру, фермента сверяется с сигнальным кодом субстрата по принципу их химической и стерической комплементарности. Всё это означает, что в любой живой системе применяются помехозащищенные коды. 5. Повышение достоверности передачи сообщений, так как ошибочное замещение одной аминокислоты на другую в любом стереохимическом коде, как правило, ведёт к «потере» информационного сигнала белковой молекулы. 6. Повышение надёжности передачи за счет многократной циклической передачи одной и той же информации (в структурах типовых биомолекул, например, белковых). Следовательно, эффективность применения в живых системах молекулярных кодов обеспечивается многократным циклическим их повторением в структурах типовых белковых (и других) биомолекул. 7. Возможность регуляторного воздействия на управляющие стереохимические коды белковых макромолекул путем «разрешения или запрета» на прохождение управляющих команд (при помощи регуляторных молекул обратных связей). 8. Экономное использование различных компартментов и каналов связи, так как живая клетка является многоканальной системой самоуправления. Такое стереохимическое кодовое разделение сигналов позволяет белку динамически и информационно взаимодействовать с различными молекулярными партнёрами: с транспортными молекулами, с коферментами, с мембранами клетки, с АТФ, с регуляторными молекулами, с партнёрами по агрегатированию и т. д. В связи с этим, процесс описания конкретного функционального алгоритма белковой молекулы на языке «стереохимических кодовых команд» можно было бы назвать – «программированием в стереохимических кодах». Стереохимический принцип кодирования и программирования функций биологических молекул – это и есть тот путь, который непосредственно ведёт от молекулярной информации к биологическим характеристикам живой материи. Причем, различные буквенно-символьные кодовые последовательности в цепях применяются не только для передачи сообщений о структурной организации биологических молекул, но используются и для передачи независимых команд, сообщений, адресных сигналов и инструкций. Как мы видим, в живой системе широкое применение находят именно адресные передачи, где разделение передающих сигналов (в структуре биомолекул) можно назвать химическим и «стереохимическим» кодовым разделением сигналов. Нам до сих пор неясен и непонятен этот древнейший язык живой природы, который, по всей вероятности, является не только средством молекулярного «общения», но и формой выражения биологической сущности живой материи. Стереохимические коды активных центров построены на основе аминокислотного кода, поэтому ферменты могут адресно взаимодействовать с молекулой субстрата и быстро находить нужную им химическую связь и связывающую группу. Кодовые компоненты активных центров ферментов могут комплементарно взаимодействовать с доступными для них функциональными или боковыми атомными группами и атомами молекулы субстрата. Как полагают биологи, субстрат присоединяется к активному центру фермента, который геометрически и химически представляет собой как бы негативный отпечаток молекулы субстрата, то есть – комплементарен ей. А с информационной точки зрения – это процесс рецепции кодовых компонентов и проверка их на функциональное соответствие друг другу. Поэтому рецепция и приём осведомляющей кодовой информации субстрата заканчивается подключением его молекулы, через контакт «устройства комплементарного сопряжения» активного центра, к управляющим органам и механизмам фермента. Благодаря этому, все субстраты для своих ферментов являются сигнальными молекулами, несущими осведомляющую стереохимическую информацию. На этих принципах основана биохимическая логика информационных взаимодействий между ферментами и их субстратами. Субстраты – это тот химический и информационный материал, который обрабатывается управляющей системой клетки. Таким образом, молекулярные биологические системы наиболее широко используют стереохимические кодовые сигналы с переносчиком информации в виде трёхмерных биомолекул. А это уже качественно новый скачок в использовании молекулярной информации, которая в такой форме явно становится основной характеристикой живой материи. Стереохимическое кодирование в живых молекулярных системах служит для программирования функций различных биомолекул. Биохимическая логика информационных взаимодействий, в частности, предопределяет и протекание химических реакций, так как она основана на явлениях стереохимического кодового «узнавания» соответствующими ферментами различных био-логических элементов или их функциональных и боковых атомных групп и их химических связей, то есть различных химических букв, символов и знаков биологических молекул субстрата. Если для компактной трёхмерной упаковки молекулярных цепей, а, следовательно, и информации, в живых системах применяется линейный принцип кодирования, то стереохимический принцип кодирования служит для программирования самих функций биологических молекул. В силу этих обстоятельств информация в молекулярной биологии приобретает смысл только через функцию, которую она кодирует. Биологические функции возникают в процессе информационного взаимодействия биологических молекул друг с другом. Поэтому все информационные взаимодействия биомолекул являются прелюдией к выполнению биологических функций . Заметим, что стереохимическими сигналами активного центра кодируются не только адресный код молекулы субстрата, но и те функции, которые должен осуществить фермент. К примеру, код операции указывает характер химического превращения, которую должен осуществить фермент с молекулой (или молекулами) субстрата. Поэтому стереохимическими кодами (адресными кодами и кодами операций) соответствующих ферментов программируются разные биологические функции, в том числе и функции управления различными ступенчатыми химическими реакциями – окисления, восстановления, расщепления, межмолекулярного переноса атомных групп и т. д. Таким образом, оказывается, что все химические реакции в живых системах управляются только информационным путём. 8. Матричный (комплементарный) принцип информационных взаимодействий»огл.Направленный процесс кодирования и передачи информации от источника информации к приемнику называется коммуникацией. А коммуникативность в живой системе – это способность биологических молекул к обмену информацией через посредство общей системы символов, то есть с помощью их линейных или стереохимических кодовых матриц. По принципу взаимодополняемости микроматрицы молекулярных партнёров должны комплементарно соответствовать друг другу. Биологические функции возникают лишь в процессе адресной встречи и обмена информацией между биомолекулами с помощью их кодовых стереохимических микроматриц, которые должны комплементарно соответствовать друг другу. А соответствие молекулярных кодов в живых системах строится по принципу их структурной (стерической) и химической комплементарности, то есть на основе взаимодополняемости их связей, структур и функций. Можно сказать, что к наиболее изученным информационным взаимодействиям в живой клетке относятся именно матричные процессы. Здесь хорошо просматриваются идеи программного био-логического управления, когда случайные беспорядочные столкновения молекул сменяются четко организованными, генетически детерминированными процессами. Например, последовательность нуклеотидов в одной цепи ДНК автоматически определяет последовательность в другой, комплементарной цепи. В поддержании и закреплении третичной структуры глобулярных белков принимают участие различные типы комплементарных (информационных) сил, связей и взаимодействий между элементами или фрагментами полипептидной цепи: электростатические эффекты, ионные и водородные связи, вандерваальсовы силы и гидрофобные взаимодействия. Во время конформационных преобразований каждый сигнал R-группы полипептидной цепи кооперативно взаимодействует с другими сигнальными элементами, а также с молекулами воды, которая всегда принимает участие в формировании трёхмерной структуры белка. При этом стабилизация трёхмерной конформации белковой молекулы и правильное расположение структур определяется сочетанием различных типов комплементарных взаимодействий: «1) ионными связями между положительно и отрицательно заряженными боковыми группами аминокислот; 2) водородными связями между атомами, несущими частичные положительные и частично отрицательные заряды; 3) гидрофобными взаимодействиями, обусловленными стремлением неполярных боковых R-групп аминокислот объединиться друг с другом, а не смешиваться с окружающей их водной средой; 4) ковалентными связями между атомами серы двух молекул аминокислоты цистеина» [7]. Таким образом, трёхмерная конформация белка однозначно определяется информацией, которая записана в «линейной» аминокислотной последовательности его полипептидной цепи. Отсюда следует, что любые информационные взаимодействия между фрагментами молекулярной цепи в структуре биомолекулы или же между биомолекулами клетки могут базироваться только на химической и стерической комплементарности их биохимических матриц, то есть на дополнительности химических свойств, электрических зарядов и структурных рельефов друг другу. Естественно возникает вопрос, почему живые молекулярные системы так широко применяют матричный способ рецепции и передачи информации? Заметим, что этот способ одновременно объединяет как структурный, так и химический способ соответствия кодовых компонентов. Во-первых, при взаимодействии биомолекул при помощи кодовых микроматриц большая роль отводится ионным взаимодействиям как наиболее дальнодействующим (до 0,7нм) и включающимся в первую очередь. Затем между молекулами возникают более короткодействующие (на расстоянии до 0,2 нм) связи: водородные, гидрофобные, ван-дер-ваальсовы. Однако для того, чтобы эти силы могли возникнуть и действовать, необходимо, прежде всего, стерическое, пространственное соответствие (комплементарность) взаимодействующих поверхностей. Иначе говоря, должна существовать возможность сближения этих поверхностей на короткое расстояние, при котором возможно образование перечисленных связей. Необходима также комплементарность по распределению зарядов противоположного знака (для возникновения электростатических сил), гидрофобных областей и групп, способных к образованию водородных связей. Таким образом, в процессе информационных взаимодействий важнейшую роль играет явление физико-химического кодового «узнавания», то есть наличие стерической и химической комплементарности [10]. Наличие в структурах макромолекул как внутримолекулярных, так и внешних информационных сил и связей (обусловленных составляющими их элементами), которые сами по себе слабы, но мощны своей многочисленностью и разнообразием, позволяет говорить о том, что внутри и вокруг макромолекулы образуется специфическое силовое «информационное поле», которое способно влиять как на структуру самой макромолекулы, так и на её микроокружение. При этом сама макромолекула как бы стабилизируется самосогласованным сжимающим информационным полем, обусловленным кооперативными силами притяжения между боковыми атомными группами и атомами мономеров. Эти рассуждения приводят нас к мысли о существовании полей особого типа, которые можно назвать «информационными полями и сферами» живой материи. Информационная сфера – это состав того информационного поля, которое образуется и окружает конкретную биологическую молекулу в определённый период времени. А наложение информационных сфер друг на друга и создаёт в окружающем пространстве живой клетки общее информационное поле. Можно констатировать, что информационное поле живой материи – это одно из видов полей, которое образуется с помощью различных биологических молекул и клеточных структур, способных к информационному взаимодействию. Молекулярные информационные поля, по всей вероятности, служат для облегчения дистанционного, а затем, и контактного коммуникативного общения биологических молекул друг с другом. Только в таком поле молекулы, находящиеся в клеточных отсеках, способны быстро находить друг друга, информационно взаимодействовать и возбуждать при этом биологические функции. Любая молекула может находиться в одной из точек информационного поля, от энергии которого и зависит её поведение. Информационные взаимодействия, обусловленные кодовыми микроматрицами, состоящими порой из многочисленных боковых атомных групп элементов, достаточно сложны и более грандиозны чем, к примеру, процессы в цифровых системах. Они связаны с меняющейся динамикой взаимодействия и многовариантностью физико-химических сил и связей, определяющих характер молекулярной биологической информации. Здесь отсутствуют четко тестируемые сигналы определённого типа, как, например, 1 и 0 в цифровых устройствах. Каждый элементарный био-логический сигнал боковой группы имеет своё смысловое значение и характеризуется своим набором физико-химических свойств, и своим позиционным расположением в биохимической матрице. От этих параметров, по всей видимости, и зависит функциональная направленность и кооперативность действия каждого индивидуального единичного сигнала, то есть неоднозначность действия отдельного био-логического элемента, входящего в состав кодового (микроматричного) сигнала макромолекулы. Целью химического и стереохимического кодирования биомолекул является передача адресных информационных сообщений с кодовым разделением различных по своему назначению сигналов. Более чем наглядно это видно, когда такая программа реализуется в форме белков и ферментов, то есть в виде молекулярных биологических автоматов или манипуляторов [9]. Поэтому можно сказать, что это – универсальный путь передачи управляющей информации для непосредственного использования её в различных биологических процессах. Очевидно, что по кодовым компонентам полипептидных цепей вполне можно делать предсказания и о трёхмерных пространственных структурах белковых молекул, и об их функциональном и информационном назначении. Изучение кодовых посылок, линейных и стереохимических кодов и кодовых комбинаций (программных модулей) в структуре биологических молекул, должно стать приоритетным направлением в молекулярной биологической информатике. Аналогичным образом идет трёхмерное преобразование макромолекул полисахаридов или липидов, осуществляемое кодовыми элементами простых сахаров или жирных кислот. При этом, естественно, эти макромолекулы будут иметь свое функциональное назначение и свои биологические характеристики. Список литературы»огл.1. Библиотека РГИУ. Философия информационной цивилизации. Интернет. 2. Вернер Гитт. «Информация: третья фундаментальная величина». Интернет. 3. А. Ленинджер. Основы биохимии. Пер. с англ. в 3-х томах – М: Мир, 1985. 4. Ю. Я. Калашников. Кодирование и программирование биологических молекул. Дата публикации: 01.01.2007г., источник: http://new-idea.kulichki.com/ 5. Ю. Я. Калашников. Единство вещества, энергии и информации – основной принцип существования живой материи. Дата публикации: 30 июня 2006г., источник: SciTecLibrary.ru; Сайт: http://new-idea.kulichki.com/, дата публикации: 07.12.2006г. 6. Ю. Я. Калашников. Жизнь – это бесценный дар материального и виртуального мира. Дата публикации: 24 января 2008г., источник: SciTecLibrary.ru; Сайт: http://new-idea.kulichki.com/, дата публикации: 09.01.2008г 7. П. Кемп, К. Армс. Введению в биологию. Пер. с англ. – М: «Мир», 1988. 8. Программирование в математике и реальном мире. Интернет. 9. Ю. Я. Калашников. Ферменты и белки живой клетки – это молекулярные биологические автоматы с программным управлением. Дата публикации: 30 июня 2006г., источник: SciTecLibrary.ru; Сайт: http://new-idea.kulichki.com/, дата публикации: 13.12.2006г 10. А. А. Анисимов, А. Л. Леонтьева и др. Основы биохимии. – М: «Высш. шк.», 1986г. Калашников Юрий Яковлевич Контакт с автором: kalashnikov_mgn@rambler.ru ОГЛАВЛЕНИЕЖивая материя – самая жгучая тайна нашей Вселенной 1. Информационный подход к молекулярным проблемам 2. Кодированная информация как главный атрибут живой материи 3. Информация входит в круг основных сущностей нашего мира 4. Особенности молекулярной биологической информации 5. Молекулярный алфавит живой природы 6.Структурное кодирование и программирование биологических макромолекул 7. Химический и стереохимический способы разделения сигналов 8. Матричный (комплементарный) принцип информационных взаимодействий Как нас найти...
|
|
дизайн, программирование: Присяжный А.В.
|